
Information Theory — The Bridge Connecting Bounded Rational Game Theory and

Statistical Physics

David H. Wolpert
NASA Ames Research Center,
Moffett Field, CA, 94035, USA

dhw@email.arc.nasa.gov

A long-running difficulty with conventional game theory has been how to modify it to accom-
modate the bounded rationality of all real-world players. A recurring issue in statistical physics
is how best to approximate joint probability distributions with decoupled (and therefore far more
tractable) distributions. This paper shows that the same information theoretic mathematical struc-
ture, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not
only provides a principled formulation of bounded rationality and a set of new types of mean field
theory in statistical physics; it also shows that those topics are fundamentally one and the same.
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I. INTRODUCTION

In noncooperative game theory, one has a set of N
players, each choosing its strategy xi independently, by
sampling a distribution qi(xi) over those strategies. Each
player i also has her own utility function gi(x), specify-
ing how much reward she gets for every possible joint-
strategy x of all N players. Let q(i)(x(i)) mean the joint
probability distribution of all players other than i, i.e.,
∏

j 6=i qj(xj). Then the “goal” of each player i is to set qi
to so that, conditioned on q(i), the expected value of i’s
utility is as high as possible.

Conventional game theory assumes each player i is
“fully rational”, able to solve for that optimal qi, and
that she then uses that distribution. It is primarily con-
cerned with analyzing the such equilibria of the game
[3–6]. In the real world, this assumption of full rational-
ity almost never holds, whether the players are humans,
animals, or computational agents [7–15]. This is due to
the cost of computation of that optimal distribution, if
nothing else. This real-world bounded rationality is
one of the major impediments to applying conventional
game theory in the real world.

This paper shows how Shannon’s information theory
[16–18] provides a principled way to modify conventional
game theory to accommodate bounded rationality. This
is done by following information theory’s prescription
that, given only partial knowledge concerning the dis-
tributions the players are using, we should use the Maxi-
mum Entropy (Maxent) principle to infer those distribu-
tions. Doing so results in the principle that the bounded
rational equilibrium is the minimizer of a certain set
of coupled Lagrangian functions of the joint distribu-
tion, q(x) =

∏

i qi(xi). This mathematical structure is
a special instance of Product Distribution (PD) theory
[11, 19–24].

In addition to showing how to formulate bounded ra-
tionality, PD theory provides many other advantages to
game theory. Its formulation of bounded rationality ex-
plicitly includes a term that, in light of information the-

ory, is naturally interpreted as a cost of computation.
PD theory also seamlessly accommodates multiple util-
ity functions per player. It also provides many powerful
techniques for finding (bounded rational) equilibria, and
helps address the issue of multiple equilibria. Another
advantage is that by changing the coordinates of the un-
derlying space of joint moves x, the same mathematics
describes a type of bounded rational cooperative game
theory, in which the moves of the players are transformed
into contracts they all offer one another.

Perhaps the most succinct and principled way of deriv-
ing statistical physics is as the application of the Maxent
principle. In this formulation, the problem of statistical
physics is cast as how best to infer the probability dis-
tribution over a system’s states when one’s prior knowl-
edge consists purely of the expectation values of certain
functions of the system’s state [18, 25]. For example,
this prescription says we should infer that the probabil-
ity distribution p governing the system is the Boltzmann
distribution when our prior knowledge is the system’s
expected energy. This is known as the “canonical en-
semble”. Other ensembles arise when other expectation
values are added to one’s prior knowledge. In particu-
lar, if the number of particles in the system is uncertain,
but one knows its expectation value, one arrives at the
“grand canonical ensemble”.

One major difficulty with working with these ensem-
bles is that under them the particles of the system are sta-
tistically coupled with one another. For high-dimensional
systems, this can make statistical physics calculations
very difficult. Accordingly, a large body of work has been
produced under the rubric of Mean Field (MF) theory, in
which the ensemble is approximated with a distribution
in which the particles are independent [26]. In an MF ap-
proximation, a product distribution q governs the joint
state of the particles — just as a product distribution
governs the joint strategy of the players in a game.

MF approximations are usually derived in an ad hoc
manner. The principled way to derive a MF approxima-
tion (or any other kind) to a particular ensemble is to
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specify a distance measure saying how close two prob-
ability distributions are, and then solve for the q that
is closest to the distribution being approximated, p. To
do this one needs to specify the distance measure. How
best to measure distances between probability distribu-
tions is a topic of ongoing controversy and research [27].
The most common way to do so is with the infinite limit
log likelihood of data being generated by one distribution
but misattributed to have come from the other. This is
known as the Kullback-Leibler (KL) distance [16, 17, 28].
It is far from being a metric. In particular, it is not sym-
metric under interchange of the two distributions being
compared.

It turns out that the simplest MF theories minimize the
KL distance from q to p. However it can be argued it is
the KL distance from p to q that is the most appropriate
measure, not the KL distance from q to p. Using that
distance, the optimal q is a new kind of approximation
not usually considered in statistical physics.

For the canonical ensemble, the type of KL distance
arising in simple MF theories turns out to be identical
to the maxent Lagrangian arising in bounded rational
game theory. This shows how bounded rational (inde-
pendent) players are formally identical to the particles in
the MF approximation to the canonical ensemble. Un-
der this identification, the moves of the players play the
roles of the states of the particles, and particle energies
are translated into player utilities. The coordinate trans-
formations which in game theory result in cooperative
games are, in statistical physics, techniques for more al-
lowing the canonical ensemble to be more accurately ap-
proximated with a product distribution.

This identification raises the potential of transferring
some of the powerful mathematical techniques that have
been developed in the statistical physics community (e.g.,
extensions of mean field theory [26] or cavity methods
[29]) to noncooperative game theory. In also suggests
translating some of the other ensembles of statistical
physics to game theory, in addition to the canonical en-
semble. As an example, in the grand canonical ensemble
the number of particles is variable, which, after a MF ap-
proximation, corresponds to having a variable number of
players in game theory. Among other applications, this
provides us with a new framework for analyzing games in
evolutionary scenarios, different from evolutionary game
theory.

In the next section noncooperative game theory and in-
formation theory are cursorily reviewed. Then bounded
rational game theory is derived, and its many advantages
are discussed. The following section starts with a cursory
review of the information-theoretic derivation of statisti-
cal physics. After that is a discussion of the two kinds of
KL distance and the MF theories they induce, and a dis-
cussion of coordinate systems. This section also includes
a discussion on translating a MF version of the grand
canonical ensemble into a new kind of evolutionary game
theory.

Miscellaneous proofs can be found in the appendix.

As discussed in the physics section, the maxent La-
grangian and associated Boltzmann solution at the core
of this paper has been investigated for an extremely long
time in the context of many-particle systems. The use
of the Boltzmann distribution over possible moves also
has a long history in the Reinforcement Learning (RL)
literature, i.e., in the design of algorithms for a player in-
volved in an iterated game with Nature [30, 31]. Related
work has considered multiple players [32, 33]. In par-
ticular, some of that work has been done in the context
of of “mechanism design” of many players, i.e., in the
context of designing the utility functions of the players
to induce them to maximize social welfare [34–37]. In
all of this RL work the Boltzmann distribution is usually
motivated either as an a priori reasonable way to trade
off exploration and exploitation, as part of Markov Chain
Monte Carlo procedure, or by its asymptotic convergence
properties [38].

In addition, independent of the work reported in this
paper, the maxent Lagrangian and/or the Boltzmann dis-
tribution has previously been muted as a way to model
human players [10, 39, 40]. Some of that work has explic-
itly noted the relation between the Boltzmann distribu-
tion and statistical physics [41]. However the motivation
of the maxent Lagrangian and Boltzmann distribution in
that work is ad hoc, based on particular simple models
of human decision-making and/or of player interactions;
there is no use of information theory to derive the maxent
Lagrangian from first principles. This is why no connec-
tion is made in that previous work between the maxent
Lagrangian and the cost of computation, why there is
no recognition of how to modify the Lagrangian for mul-
tiple cost functions, and why there is no development
of rationality operators, or the relation between semi-
coordinate transformations and cooperative game theory.
Ultimately, this lack of formal underpinnings is also why
that previous work did not note the formal identity be-
tween the game theory of actual bounded rational human
players and MFT.

Finally, it’s important to note that PD theory also has
many applications in science beyond those considered in
this paper. For example, see [21, 22, 42–44] for work re-
lating the maxent Lagrangian to distributed control and
to distributed optimization. See [43] for algorithms for
speeding up convergence to bounded rational equilibria.
Some of those algorithms are related to simulated and
deterministic annealing [28]. In [20] others of those
algorithms are related to Stackelberg games, and more
generally to the problem of finding the optimal control
hierarchy for team of players with a common goal, i.e.,
finding an optimal organization chart. See also [45–47]
for work showing, respectively, how to use PD theory to
improve Metropolis-Hastings sampling, how to relate it
to the mechanism design work in [34–37], and how to
extend it to continuous move spaces and time-extended
strategies.
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II. PD THEORY AS BOUNDED RATIONAL

NONCOOPERATIVE GAME THEORY

This section motivates PD theory as a way of address-
ing several of the shortcomings of conventional noncoop-
erative game theory.

A. Review of noncooperative game theory

In noncooperative game theory one has a set of N
players. Each player i has its own set of allowed pure
strategies. A mixed strategy is a distribution qi(xi)
over player i’s possible pure strategies. Each player i also
has a utility function gi that maps the pure strategies
adopted by all N of the players into the real numbers.
So given mixed strategies of all the players, the expected
utility of player i is E(gi) =

∫

dx
∏

j qj(xj)gi(x) [54].
This basic framework can be elaborated to model

many interactions between biological organisms, and in
particular between human beings. These interactions
range from simple abstractions like the famous prisoner’s
dilemma to iterated games like chess, to international re-
lations [3, 4, 48].
Much of noncooperative game theory is concerned with

equilibrium concepts specifying what joint-strategy
one should expect to result from a particular game. In
particular, in a Nash equilibrium every player adopts
the mixed strategy that maximizes its expected utility,
given the mixed strategies of the other players. More
formally, ∀i, qi = argmaxq′i

∫

dx q′i
∏

j 6=i qj(xj) gi(x).

Several very rich fields have benefited from a close re-
lationship with noncooperative game theory. Particular
examples are evolutionary game theory (in which the set
of N players is replaced by an infinite set of reproduc-
ing organisms) and cooperative game theory (in which
players choose which coalitions of other players to join)
[6, 49]. Game theory as a whole is also closely related to
economics, in particular the field of mechanism design,
which is concerned with how to induce the set of players
to do adopt a socially desirable joint-strategy [3, 50–52].

B. Problems with conventional noncooperative

game theory

A number of objections to the Nash equilibrium con-
cept have been resolved. In particular, it was Nash who
proved that every game has at least one Nash equilib-
rium if one expands the realm of discourse to include
mixed strategies. (The same is not true for pure strate-
gies.) Other objections have been more or less resolved
through numerous refinements of the Nash equilibrium
concept.
However there are several major problems with the

concept that are still outstanding. One of them is the
possible multiplicity of equilibria; this multiplicity means
the Nash equilibrium concept cannot be used to specify

the joint strategy that is actually adopted in a real world
game. (Some refinements of the Nash equilibrium con-
cept attempt to address this problem, though none has
succeeded.) Another problem is that while calculating
Nash equilibria is straightforward in many simple games
(e.g., 2 players in a zero-sum game), calculating them
in the general case can be a very difficult computational
multi-criteria optimization problem. Yet another prob-
lem is that there is no general way to extend the concept
to allow each player to have multiple utility functions.
However perhaps the major problem with the Nash

equilibrium concept is its assumption of full rational-
ity. This is the assumption that every player i can both
calculate what the strategies qj 6=i will be and then calcu-
late its associated optimal distribution. In other words,
it is the assumption that every player will calculate the
entire joint distribution q(x) =

∏

j qj(xj). If for no other
reasons than computational limitations of real humans,
this assumption is essentially untenable. This problem is
just as severe if one allows statistical coupling among the
players [3, 53].
A large body of empirical lore has been generated char-

acterizing the bounded rationality of humans. Similarly
much has been learned about the empirical behavior
of (bounded rational) machine learning computer algo-
rithms playing games with one another [7, 13]. None of
this work has resulted in a full mathematical theory of
bounded rationality however.
There have also been numerous theoretical attempts

to incorporate bounded rationality into noncooperative
game theory by modifying the Nash equilibrium con-
cept. Some of them assume essentially that every player’s
mixed strategy is its Nash-optimal strategy with some
form of noise superimposed [6]. Others explicitly model
the humans, typically as computationally limited au-
tomata, and assume the automata perform optimally
subject to those computational limitations [10]. Both
approaches, while providing insight, are very ad hoc as
models of games involving real-world organisms or real-
world (i.e., non-trivial) machine learning algorithms.
The difficulty of calculating equilibria is addressed in

the sections below on solving for the distributions of PD
theory. The rest of this section shows how information
theory can be used to extend game theory to avoid its
other shortcomings. Finally, the sections after this one
present some other extensions of game theory, in partic-
ular to allow for a variable number of players. (Games
with variable number of players arise in many biological
scenarios as well as economic ones.)

C. Review of the maximum entropy principle

Shannon was the first person to realize that based
on any of several separate sets of very simple desider-
ata, there is a unique real-valued quantification of the
amount of syntactic information in a distribution P (y).
He showed that this amount of information is (the nega-
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tive of) the Shannon entropy of that distribution, S(P ) =

−
∫

dy P (y)ln[P (y)
µ(y) ] [55].

So for example, the distribution with minimal infor-
mation is the one that doesn’t distinguish at all between
the various y, i.e., the uniform distribution. Conversely,
the most informative distribution is the one that specifies
a single possible y. Note that for a product distribution,
entropy is additive, i.e., S(

∏

i qi(yi)) =
∑

i S(qi).
Say we given some incomplete prior knowledge about a

distribution P (y). How should one estimate P (y) based
on that prior knowledge? Shannon’s result tells us how to
do that in the most conservative way: have your estimate
of P (y) contain the minimal amount of extra information
beyond that already contained in the prior knowledge
about P (y). Intuitively, this can be viewed as a version
of Occam’s razor. This approach is called the maximum
entropy (maxent) principle. It has proven extremely use-
ful in domains ranging from signal processing to image
processing to supervised learning [17].

D. Maxent Lagrangians

Much of the work on equilibrium concepts in game the-
ory adopts the perspective of an external observer of a
game. We are told something concerning the game, e.g.,
its utility functions, information sets, etc., and from that
wish to predict what joint strategy will be followed by
real-world players of the game. Say that in addition to
such information, we are told the expected utilities of
the players. What is our best estimate of the distribu-
tion q that generated those expected utility values? By
the maxent principle, it is the distribution with maximal
entropy, subject to those expectation values.
To formalize this, for simplicity assume a finite num-

ber of players and of possible strategies for each player.
To agree with the convention in other fields, from now on
we implicitly flip the sign of each gi so that the associ-
ated player i wants to minimize that function rather than
maximize it. Intuitively, this flipped gi(x) is the “cost”
to player i when the joint-strategy is x, rather than its
utility then.
Then for prior knowledge that the expected utilities of

the players are given by the set of values {εi}, the maxent
estimate of the associated q is given by the minimizer of
the Lagrangian

L (q) ≡
∑

i

βi[Eq(gi)− εi]− S(q)

=
∑

i

βi[

∫

dx
∏

j

qj(xj)gi(x)− εi]− S(q) (1)

where the subscript on the expectation value indicates
that it evaluated under distribution q, and the {βi} are
Lagrange parameters implicitly set by the constraints on
the expected utilities [56].
Solving, we find that the mixed strategies minimizing

the Lagrangian are related to each other via

qi(xi) ∝ e
−Eq(i)

(G|xi) (2)

where the overall proportionality constant for each i is set
by normalization, and G ≡

∑

i βigi, and the subscript
q(i) on the expectation value indicates that it is evalu-
ated according to the distribution

∏

j 6=i qj . In Eq. 2 the
probability of player i choosing pure strategy xi depends
on the effect of that choice on the utilities of the other
players. This reflects the fact that our prior knowledge
concerns all the players equally.
If we wish to focus only on the behavior of player i,

it is appropriate to modify our prior knowledge. To see
how to do this, first consider the case of maximal prior
knowledge, in which we know the actual joint-strategy of
the players, and therefore all of their expected costs. For
this case, trivially, the maxent principle says we should
“estimate” q as that joint-strategy (it being the q with
maximal entropy that is consistent with our prior knowl-
edge). The same conclusion holds if our prior knowledge
also includes the expected cost of player i.
Now modify this maximal set of prior knowledge by

removing from it specification of player i’s strategy. So
our prior knowledge is the mixed strategies of all players
other than i, together with player i’s expected cost. We
can incorporate the prior knowledge of the other players’
mixed strategies directly into our Lagrangian, without
introducing Lagrange parameters. That maxent La-
grangian is

Li(qi) ≡ βi[E(gi)− εi]− Si(qi)

= βi[

∫

dx
∏

j

qj(xj)gi(x)− εi]− Si(qi).

All of these Lagrangians (one for each i) are jointly solved
at a q given by a set of coupled Boltzmann distribu-
tions:

qBi (xi) ∝ e
−βiEq(i)

(gi|xi) (3)

where the {βi} are Lagrange parameters enforcing our
constraints in the usual way. Following Nash, we can use
Brouwer’s fixed point theorem to establish that for any
fixed set of non-negative values {βi}, there must exist at
least one product distribution given by the product of
these Boltzmann distributions (one term in the product
for each i).
The first term in Li is minimized by a perfectly ratio-

nal player. The second term is minimized by a perfectly
irrational player, i.e., by a perfectly uniform mixed strat-
egy qi. So βi in the maxent Lagrangian explicitly specifies
the balance between the rational and irrational behavior
of the player. In particular, for β → ∞, by minimizing
the Lagrangians we recover the Nash equilibria of the
game. More formally, in that limit the set of q that si-
multaneously minimize the Lagrangians is the same as
the set of delta functions about the Nash equilibria of
the game. The same is true for Eq. 2.
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The β < ∞ solutions of Eq. 3 can also be viewed as
“equilibra” in the conventional game theory sense, of be-
ing a self-consistent set of mixed strategies of the players.
To see this, posit that for for each player there is a rule
(implicit or otherwise) for how it sets its mixed strategy,
a rule based on the expected costs of each of that player’s
pure strategies. Say that each player’s rule takes the form
of a Boltzmann distribution over those expected costs for
each of the player’s possible pure strategies. (Such a rule
may reflect cost of computation (see below), desire by
the player to explore as well as exploit, inherent psycho-
logical biases, etc.) Then the system is in a bounded
rational equilibrium for a joint mixed strategy where all
the players follow their separate rules in a globally con-
sistent manner.
Eq. 2 is just a special case of Eq. 3, where all player’s

share the same cost function G. (Such games are known
as team games.) Due to this, our guarantee of the
existence of a solution to the set of maxent Lagrangians
implies the existence of a solution of the form Eq. 2.
Typically players aren’t close to perfectly self-

defeating. Almost always they will be closer to mini-
mizing their expected cost than maximizing it. For prior
knowledge consistent with such a case, the βi are all non-
negative.
Finally, our prior knowledge often will not consist of

exact specification of the expected costs of the players,
even if that knowledge arises from watching the players
make their moves. Such other kinds of prior knowledge
are addressed in several of the following subsections.

E. Alternative interpretations of Lagrangians

There are numerous alternative interpretations of these
results. For example, change our prior knowledge to be
the entropy of each player i’s strategy, i.e., how unsure
it is of what move to make. Now we cannot use informa-
tion theory to make our estimate of q. Given that players
try to minimize expected cost, a reasonable alternative
is to predict that each player i’s expected cost will be as
small as possible, subject to that provided value of the
entropy and the other players’ strategies. The associated
Lagrangians are αi[S(qi) − σi] − E(gi), where σi is the
provided entropy value. This is equivalent to the max-
ent Lagrangian, and in particular has the same solution,
Eq. 3.
Another alternative interpretation involves world

cost functions, which are quantifications of the qual-
ity of a joint pure strategy x from the point of view
of an external observer (e.g., a system designer, the
government, an auctioneer, etc.). A particular class
of world cost functions are “social welfare functions”,
which can be expressed in terms of the cost functions
of the individual players. Perhaps the simplest example
is G(x) =

∑

i βigi(x), where the βi serve to trade off how
much we value one player’s cost vs. anothers. If we know
the value of this social welfare function, but nothing else,

then maxent tells us to minimize the Lagrangian of Eq. 1.
An important aspect of any of these interpretations is

that typically one does not have to explicitly specify the
values in one’s “prior knowledge”. This is because typ-
ically the Lagrange parameters are montonic functions
of those “prior knowledge” values [43]. So it suffices to
specify the values of the Lagrange parameters; the ex-
pected value “prior knowledge” is purely nominal. This
is formalized in the subsection on rationality operators,
where the prior knowledge is explicitly formulated as the
values of Lagrange parameters.

F. Bounded rational game theory

In many situations we have prior knowledge different
from (or in addition to) expected values of cost functions.
This is particularly true when the players are human be-
ings (so that behavioral economics studies can be brought
to bear) or simple computational algorithms. To apply
information theory in such situations, we simply need to
incorporate that prior knowledge into our Lagrangian(s).
To give a simple example, say that we know that the

players all want to ensure not just a low expected cost,
but also that the actual cost doesn’t vary too much from
one sample of q to the next. We can formalize this by say-
ing that in addition to expected costs, our prior knowl-
edge includes variances in the costs. Given the expected
values of the costs, such variances are specified by the ex-
pected values of the squares of the cost. Accordingly, all
our prior knowledge is in the form of expectation values.
Modifying Eq. 3 appropriately, we arrive at the solution

qi(xi) ∝ e
−Eq(i)

(αi(gi−λi)
2|xi).

where the Lagrange parameters αi and λi are given by
the provided expectations and variances of the costs of
the players.
Eq. 4 is our best guess for what the actual mixed strat-

egy of player i is, in light of our prior knowledge concern-
ing that player. Note that this formula directly reflects
the fact that player i does not care only about minimiz-
ing cost, i.e., maximizing utility. In this, we are directly
incorporating the possibility that the player violates the
axioms of utility theory — something never allowed in
conventional game theory. Other behavioral economics
phenomena like risk aversion can be treated in a similar
fashion.
A variant of this scenario would have our prior knowl-

edge only give the variances of the costs of the players
and not their expected costs. In this cost the Lagrangian
must involve a term quadratic in q, in addition to the
entropy term and a term linear in q. (See the subsection
on multiple cost functions.) More generally, our prior
knowledge can be any nonlinear function of q. In addi-
tion, even if we stick to prior knowledge that is linear in q,
that knowledge can couple the cost functions of the play-
ers. For example, if we know that the expected difference
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in cost of players i and j is ε, the associated Lagrange
constraint term is

∫

dxq(x)[gi(x)− gj(x)− ε]. In this sit-
uation our prior knowledge couples the strategies of the
players, even though those players are independent. See
the discussions on constrained optimization in [21, 23].

G. Cost of computation

As mentioned above, bounded rationality is an un-
avoidable consequence of the cost of computation to
player i of finding its optimal strategy. Unfortunately,
one cannot simply incorporate that cost into gi, and then
presume that the player acts perfectly rationally for this
new gi. The reason is that this cost is associated with the
entire distribution qi(xi) that player i calculates; it not
associated with some particular joint-strategy formed by
sampling such a distribution.
How might we quantify the cost of calculating qi? The

natural approach is to use information theory. Indeed,
that cost arises naturally in the bounded rationality for-
mulation of game theory presented above. To see how,
for each player i define

fi(x, qi(xi)) ≡ βigi(x) + ln[qi(xi)].

Then we can write the maxent Lagrangian for player i as

Li(q) =

∫

dx q(x)fi(x, qi(xi)). (6)

Now in a bounded rational game every player sets its
strategy to minimize its Lagrangian, given the strategies
of the other players. In light of Eq. 6, this means that we
can interpret each player in a bounded rational game as
being perfectly rational for a cost function that incorpo-
rates its computational cost. To do so we simply need to
expand the domain of “cost functions” to include proba-
bility values as well as joint moves.
Similar results hold for non-maxent Lagrangians. All

that’s needed is that we can write such a Lagrangian in
the form of Eq. 6 for some appropriate function fi.

H. Shape of the Lagrangian surface

In this subsection we consider Li as a function of q,
with βi and εi both treated as fixed parameters. (So in
particular, Eq(gi) need not equal εi.)
First, say that q(i) is held fixed, with only qi allowed

to vary. This makes E(gi) be linear in qi. In addition,
entropy is a concave function, and the unit simplex is a
convex region. Accordingly, the Lagrangian of Eq. 3 has
a unique local minimum over qi. So there is no issue of
choosing among multiple minima when all of q(i) is fixed.
Nor is there any problem of “getting trapped in a local
minimum” in a computational search for that minimum.
Indeed, in this situation we can just jump directly to that
global optimum, via Eq. 3. All of this is also true if we

are considering the Lagrangian Lj 6=i rather than Li; the
function from i’s strategy to j’s Lagrangian has a single
optimum, interior to i’s simplex.
Now introduce the shorthand

[U ]i,p(xi) ≡

∫

dx(i)U(xi, x(i))p(x(i) | xi),

so that [gi]i,q(i)(xi) is player i’s effective cost function,

Eq(i)(gi | xi). Consider the value EqBi
([gi]i,q(i)). This

is the value of E(gi) at i’s bounded rational equilib-
rium for the fixed q(i), i.e., it is the value at the min-
imum over qi of Li. View that value as a function of
βi. One can show that this is a decreasing function. In
fact, its derivative just equals the negative of the variance
of [gi]i,q(i)(xi) evaluated under distribution q

B
i (xi). Since

E(gi) is bounded below (for bounded gi), this means that
that variance must go to zero for large enough βi. So
as βi grows, q

B
i (xi) → 0 for all xi that don’t minimize

Eq(i)(gi | xi). In other words, in that limit, qi becomes
Nash-optimal.
Next consider varying over all q ∈ Q, the space of all

product distributions q. This is a convex space; if p ∈ Q
and p′ ∈ Q, then so is any distribution on the line con-
necting p and p′. However over this space, the E(gi) term
in Li is multilinear. So Li is not a simple convex func-
tion of q. This is true even for a team game, with shared
βi, for which case every i has the same Lagrangian. So
we do not have the guarantees of a single local minimum
provided by convexity even in this case.
To further analyze the shape of the team game La-

grangian as a function of q, we start with the following
lemma, which extends the technique of Lagrange param-
eters to off-equilibrium points:

Lemma 1: Consider the set of all vectors leading from
x′ ∈ R

n that are, to first order, consistent with a set of
constraints over R

n. Of those vectors, the one giving the
steepest ascent of a function V (x) is ~u = ∇V +

∑

i λi∇fi,
up to an overall proportionality constant, where the λi
enforce the first order consistency conditions, ~u · ∇fi =
0 ∀i.

Note that the gradient of entropy is infinite at the bor-
der of Q, since at least one ln(qi) term will be negative
infinite there. Combined with Lemma 1, this can be used
to establish that at the edge of Q, the steepest descent
direction of any player’s Lagrangian points into the inte-
rior of Q (assuming finite β and {gi}). (This is reflected
in the equilibrium solutions Eq. 3.) Accordingly, whereas
Nash equilibria can be on the edge of Q (e.g., for a pure
strategy Nash equilibrium), in bounded rational games
any equilibrium must lie in the interior of Q. In other
words, any equilibrium (i.e., any local minimum) of a
bounded rational game has non-zero probability for all
joint moves. So just as when only varying a single qi,
we never have to consider extremal mixed strategies in
searching for equilibria over all Q. We can use local de-
scent schemes instead [21, 23, 43].
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Lemma 1 can also be used to construct examples of
games with more than one bounded rational equilibrium
(just like there are games with more than Nash equilib-
rium). One can also show that for every player i and
any point q interior to Q, there are directions in Q along
which i’s Lagrangian is locally convex. Accordingly, no
player’s Lagrangian has a local maximum interior to Q.
So if there are multiple local minima of i’s Lagrangian,
they are separated by saddle points across ridges. In ad-
dition, the uniform q is a solution to the set of coupled
equations Eq. 3 for a team game, but typically is not a
local minimum, and therefore must be a saddle point.
Say we modify the Lagrangians to be defined for all

possible p, not just those that are product distributions.
For example the Lagrangian of Eq. 1 becomes

L (p) ≡
∑

i

βi[

∫

dx gi(x)p(x)− εi]− S(p).

The first term in this Lagrangian is linear in p. Since en-
tropy is a concave function of the Euclidean vector p over
the unit simplex, this means that the overall Lagrangian
is a convex function of p over the space of allowed p. This
means there is a unique minimum of the Lagrangian over
the space of all possible legal p. Furthermore, as men-
tioned previously, for finite β at least one of the deriva-
tives of the Lagrangian is negative infinite at the border
of the allowed region of p. This means that the unique
minimum of the Lagrangian is interior to that region, i.e.,
is a legal probability distribution.
In general this optimal p will not be a product dis-

tribution, of course. Rather the strategy choices of the
players are typically statistically coupled, under this p.
Such coupling is very suggestive of various stochastic for-
mulations of noncooperative game theory. Coupling also
arises in cooperative game theory, in which binding con-
tracts couple the moves of the players [6, 48].
Similarly, as in proven in the appendix, the Lagrangian

L (p) = β
∑

i[Ep(gi)]
2−S(p) is convex over the manifold

of legal p, assuming non-negative β. So the model of
mechanism design introduced in Sec. II I has a unique
equilibrium — if we allow the players to be statistically
coupled.

I. Multiple cost functions per player

Say player i has several different cost functions {gji }
and wants to choose a strategy that will do well at all of
them. In the case of pure strategies we can simply “roll
up” the cost functions into an aggregate function and
employ that in a conventional, single-cost-function-per-
player game theoretic analysis. An aggregate cost func-

tion like
∑

j g
j
i (x)

∑

j 1 would not necessarily work, since it may

be that the pure strategy x minimizing that sum results
in a relatively large value for one of the gji (x). However by

construction, minimizing a function like maxjg
j
i (x) will

ensure that no particular cost function is favored over the

others. Player i will perform well according to such an
aggregate function iff it performs well according to all of
the constituent gji .

One might think that for mixed strategies one could
similarly roll up the cost functions and say that player
i works to minimize an aggregate cost function. How-
ever especially when player i has many cost functions,
it may be that performance according to one or more of
the constituent cost functions is quite bad even though
the performance according to this average function is
good. In particular, it may be that player i has rela-
tively low value of the expectation of the maximum of
its cost functions, even though the maximum of the ex-
pected costs is quite high [57]. More generally, we can-

not ensure that the expected costs of player i, Eq(g
j
i ) =

∫

dx gji (x)qi(x)q(i)(x(i)), all have good values by appro-
priately defining an aggregate gi and requiring only that
∫

dx gi(x)qi(x)q (i)(x(i)) is good. Instead, we must rede-
fine the goal of “minimizing expected costs”.

One way to reformulate our goal proceeds by analogy
with the goal typically ascribed to a player in pure strat-
egy games. This analogy is based on viewing the cost
function for player i as controlled by a fictional player
in a meta-game. Conventional game theory analyzes the
case where player i chooses a pure strategy to minimize
the worst case (over other players’ moves) cost to i, i.e.,
to minimize maxx(i)

gi(xi, x(i). Here the analogy would
be for the player to choose a mixed strategy to mini-
mize the worst case (over moves by the fictional player)

expected cost, i.e., to minimize maxjEq(g
j
i ).

A similar solution, appropriate when all of the cost
functions are nowhere-negative, is for player i to mini-
mize

∑

j [Eq(g
j
i )]

2. Due to the convexity of the squaring
operator such minimization will help ensure that no sin-
gle expectation value Eq(g

j
i ) is too high [58]. Indeed,

consider increasing the power we raise the costs to, get-
ting the function [

∑

j [Eq(g
j
i )]

n]1/n. Minimizing this for
large n will approximate the lim-sup norm, which would
force all gji to have the same (as low as possible) expec-
tation value.

As far as the math is concerned,
∑

j [Eq(g
j
i )]

2 is just
a “Lagrangian” of q, one that is convex like the La-
grangian in Eq. 3. If we wish, we can modify such a
Lagrangian to incorporate bounded rationality, to force
the solution to be interior to Q, getting Lagrangians like
∑

j βj [Eq(g
j
i )]

2−S(qi), where the βj determine the rela-
tive rationalities of player i according to its various cost
functions.

These kinds of Lagrangians can also model the pro-
cess of mechanism design, where there is an external
designer who induces the players to adopt a desirable
joint-strategy [3]. As an example, “desirable” sometimes
means that no single player’s expected cost is high. A
system that meets this goal fairly well can be modeled
with a Lagrangian involving terms like

∑

i[Eq(gi)]
2.
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J. Rationality operators

Often our prior knowledge will not concern expected
costs. In particular, this is usually true if our prior knowl-
edge is provided to us before the game is played, rather
than afterward. In such a situation, prior knowledge will
more likely concern the “intelligences” of the players, i.e.,
how close they are to being rational. In particular, if
we want our prior knowledge concerning player i to be
relatively independent of what the other players do, we
cannot use i’s expected cost as our prior knowledge. Our
prior knowledge will often concern how peaked i’s mixed
strategy is about whichever of its moves minimize its cost
(or how peaked we can assume it to be), not the associ-
ated minimal cost values.
Formally, the problem faced by player i is how to set

its mixed strategy qi(xi) so as to maximize the expected
value of its effective cost function, E(gi | xi). General-
izing, what we want is a rationality operator R(U, p) that
measures how peaked an arbitrary distribution p(y) is
about the minimizers of an arbitrary cost function U(y),
argminyU(y).
Formally, we make two requirements of R:

1. If p(y) ∝ e−βU(y), for non-negative β, then it is
natural to require that the peakedness of the dis-
tribution — its rationality value — is β.

2. We also need to also specify something of R(U, p)’s
behavior for non-Boltzmann p. It will suffice to
require that of the p satisfying R(U, p) = β, the
one that has maximal entropy is proportional to
e−βU(y). In other words, we require that the Boltz-
mann distribution maximizes entropy subject to a
provided value of the rationality operator.

As an illustration, a natural choice for R(U, p) would be
the β of the Boltzmann distribution that “best fits” p.
Information theory provides us such a measure for how
well a distribution p1 is fit by a distribution p2. This is
the Kullback-Leibler distance [16, 28]:

KL(p1 || p2) ≡ S(p1 || p2)− S(p1) (8)

where S(p1 || p2) ≡ −
∫

dy p1(y)ln[
p2(y)
µ(y) ] is known as

the cross entropy from p1 to p2 (and as usual we im-
plicitly choose uniform µ). The KL distance is always
non-negative, and equals zero iff its two arguments are
identical.
Define that N(U) ≡

∫

dy e−U(y), the normaliza-

tion constant for the distribution proportional to e−U(y).
(This is called the partition function in statistical
physics.) Then using the KL distance, we arrive at the
rationality operator

RKL(U, p) ≡ argminβKL(p ||
e−βU

N(βU)
)

= argminβ [β

∫

dy p(y)U(y) + ln(N(βU))].

In the appendix it is proven that RKL respects the two
requirements of rationality operators.
The quantity ln(N(βU)) appearing in the second equa-

tion, when scaled by β−1, is called the free energy. It
is easy to verify that it equals the Lagrangian Ep(U) −
S(p)/β if p is given by the Boltzmann distribution p(y) ∝
e−βU(y).
Say our prior knowledge is {ρi}, the rationalities of the

players for their associated effective cost functions. Then
the Lagrangian for our prior knowledge is

L (q) =
∑

i

λi[R([gi]i,q, qi)− ρi] − S(q). (9)

where the λi are the Lagrange parameters. Just as be-
fore, there is an alternative way to motivate this Lagan-
gian: if our prior knowledge consists of the entropy of
the joint system, and we assume each player will have
maximal rationality subject to that prior knowledge, we
are led to the Lagrangian of Eq. 9.
It is shown in the appendix that for the Kullback-

Leibler rationality operator, we can replace any con-
straint of the form R([gi]i,q, qi) = ρi with Eq(gi) =
∫

dx gi(x)
e−ρiE(gi|xi)

N(ρigi)
q(i)(x(i)). In other words, knowing

that player i has KL rationality ρi is equivalent to know-
ing that the actual expected value of gi equals the “ideal
expected value”, where qi is replaced by the Boltzmann
distribution of Eq. 3 with β = ρi. This contrasts with
the prior knowledge underlying the Lagrangian in Eq. 1,
in which we know the actual numerical value of Eq(gi).
Just as before, we can focus on player i by augmenting

our prior knowledge to include the strategies of all the
other players. The associated Lagrangian is

Li(qi) = λi[R([gi]i,q, qi)− ρi] − S(qi). (10)

(The prior knowledge concerning the strategies of the
other players is manifested in the effective cost function.)
It is shown in the appendix that the set of all the La-
grangians in Eq. 10 (one for each player) are minimized
simultaneously by any distribution of the form

qg ≡

∏

i e
−ρi[gi]i,q

N(ρi[gi]i,q)

In addition, since this distribution obeys all the con-
straints in the Lagrangian in Eq. 9, we know that there
exists a minimizer of that Lagrangian. All of this holds
regardless of the precise rationality operator one uses.
Note that the Lagrangian Li of Eq. 10 for player i

arises in response to prior knowledge specific to player i.
Changing from one player and its Lagrangian to another
changes the prior knowledge. The same is true for the
Lagrangians in Eq. 3.
In contrast, the Lagrangian of Eq. 9 arises for a sin-

gle unified body of prior knowledge, namely the set of
all players’ rationalities. For that single body of knowl-
edge, the equilibrium of the game is the solution to a
single-objective optimization problem. This contrasts



9

with the conventional formulation of full rationality game
theory, where the equilibrium is cast as a solution to a
multi-objective optimization problem (one objective per
player). Furthermore, as usual, for finite β at least one
of the derivatives of the Lagrangian is negative infinite
at the border of the allowed region of product distribu-
tions (i.e., at the border of the Cartesian product of unit
simplices). Accordingly, all solutions lie in the interior
of that region. This can be a big advantage for finding
such solutions numerically, since it allows one to use local
descent algorithms.

K. Semi-coordinate systems

Consider a multi-stage game like chess, with the stages
(i.e., the instants at which one of the players makes a
move) delineated by t. Now strategies are what are set
by the players before play starts. So in such a multi-stage
game the strategy of player i, xi, must be the set of t-
indexed maps taking what that player has observed in
the stages t′ < t into its move at stage t. Formally, this
set of maps is called player i’s normal form strategy.

The joint strategy of the two players in chess sets their
joint move-sequence, though in general the reverse need
not be true. In addition, one can always find a joint
strategy to result in any particular joint move-sequence.
More generally, any onto mapping ζ : x → z, not neces-
sarily invertible, is called a semi-coordinate system.
The identity mapping z → z is a trivial example of a
semi-coordinate system. Another example is the map-
ping from joint-strategies in a multi-stage game to joint
move-sequences is an example of a semi-coordinate sys-
tem. So changing the representation space of a multi-
stage game from move-sequences z to strategies x is a
semi-coordinate transformation of that game.

Typically there is overlap in what the players in chess
have observed at stages preceding the current one. This
means that even if the players’ strategies are statistically
independent, their move sequences are statistically cou-
pled. In such a situation, by parameterizing the space of
joint-move-sequences z with joint-strategies x, we shift
our focus from the coupled distribution P (z) to the de-
coupled product distribution, q(x). This is the advan-
tage of casting multi-stage games in terms of normal form
strategies.

We can perform a semi-coordinate transformation even
in a single-stage game. Say we restrict attention to dis-
tributions over spaces of possible x that are product dis-
tributions. Then changing ζ(.) from the identity map
to some other function means that the players are no
longer independent. After the transformation their strat-
egy choices — the components of z — are statistically
coupled, even though we are considering a product dis-
tribution.

Formally, this is expressed via the standard rule for

transforming probabilities,

Pz(z) ≡ ζ(Px) ≡

∫

dxPx(x)δ(z − ζ(x)), (12)

where ζ(.) is the mapping from x to z, and Px and Pz are
the distributions across x-space and z-space, respectively.
To see what this rule means geometrically, let P be the
space of all distributions (product or otherwise) over z’s.
Recall that Q is the space of all product distributions
over x, and let ζ(Q) be the image of Q in P. Then by
changing ζ(.), we change that image; different choices of
ζ(.) will result in different manifolds ζ(Q).
As an example, say we have two players, with two pos-

sible strategies each. So z consists of the possible joint
strategies, labeled (1, 1), (1, 2), (2, 1) and (2, 2). Have the
space of possible x equal the space of possible z, and
choose ζ(1, 1) = (1, 1), ζ(1, 2) = (2, 2), ζ(2, 1) = (2, 1),
and ζ(2, 2) = (1, 2). Say that q is given by q1(x1 =
1) = q2(x2 = 1) = 2/3. Then the distribution over
joint-strategies z is Pz(1, 1) = Px(1, 1) = 4/9, Pz(2, 1) =
Pz(2, 2) = 2/9, Pz(1, 2) = 1/9. So Pz(z) 6= Pz(z1)Pz(z2);
the strategies of the players are statistically coupled.
Such coupling of the players’ strategies can be viewed

as a manifestation of sets of potential binding contracts.
To illustrate this return to our two player example. Each
possible value of a component xi determines a pair of
possible joint strategies. For example, setting x1 = 1
means the possible joint strategies are (1, 1) and (2, 2).
Accordingly such a value of xi can be viewed as a set
of proffered binding contracts. The value of the other
components of x determines which contract is accepted;
it is the intersection of the proffered contracts offered
by all the components of x that determines what single
contract is selected. Continuing with our example, given
that x1 = 1, whether the joint-strategy is (1, 1) or (2, 2)
(the two options offered by x1) is determined by the value
of x2.
Binding contracts are a central component of coopera-

tive game theory. In this sense, semi-coordinate transfor-
mations can be viewed as a way to convert noncoopera-
tive game theory into a form of cooperative game theory.
While the distribution over x uniquely sets the distri-

bution over z, the reverse is not true. However so long as
our Lagrangian directly concerns the distribution over x
rather than the distribution over z, by minimizing that
Lagrangian we set a distribution over z. In this way
we can minimize a Lagrangian involving product distri-
butions, even though the associated distribution in the
ultimate space of interest is not a product distribution.
The Lagrangian we choose over x should depend on our

prior information, as usual. If we want that Lagrangian
to include an expected value over z’s (e.g., of a cost func-
tion), we can directly incorporate that expectation value
into the Lagrangian over x’s, since expected values in x
and z are identical:

∫

dzPz(z)A(z) =
∫

dxPx(x)A(ζ(x))
for any function A(z). (Indeed, this is the standard justi-
fication of the rule for transforming probabilities, Eq. 12.)
However other functionals of probability distributions
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can differ between the two spaces. This is especially com-
mon when ζ(.) is not invertible, so the space of possible
x is larger than the space of possible z. For example, in
general the entropy of a q ∈ Q will differ from that of its
image, ζ(q) ∈ ζ(Q) in such a case. (The prior probabil-
ity µ in the definition of entropy only gives us invariance
when the two spaces have the same cardinality.) A cor-
rection factor is necessary to relate the two entropies.
In such cases, we have to be careful about which space

we use to formulate our Lagrangian. If we use the trans-
formation ζ(.) as a tool to allow us to analyze bargaining
games with binding contracts, then the direct space of
interest is actually the x’s (that is the place in which the
players make their bargaining moves). In such cases it
makes sense to apply all the analysis of the preceding
sections exactly as it is written, concerning Lagrangians
and distributions over x rather than z (so long as we re-
define cost functions to implicitly pre-apply the mapping
ζ(.) to their arguments). However if we instead use ζ(.)
simply as a way of establishing statistical dependencies
among the strategies of the players, it may make sense
to include the entropy correction factor in our x-space
Lagrangian.
An important special case is where the following three

conditions are met: Each point z is the image under
ζ(.) of the same number of points in x-space, n; µ(x)
is uniform (and therefore so is µ(z)); and the Lagrangian
in x-space, Lx, is a sum of expected costs and the en-
tropy. In this situation, consider a z-space Lagrangian,
Lz, whose functional dependence on Pz, the distribution
over z’s, is identical to the dependence of Lx on Px, ex-
cept that the entropy term is divided by n [59]. Now
the minimizer P ∗(x) of Lx is a Boltzmann distribution
in values of the cost function(s). Accordingly, for any
z, P ∗(x) is uniform across all n points x ∈ ζ−1(z) (all
such x have the same cost value(s)). This in turn means
that S(ζ(Px)) = nS(Pz) So our two Lagrangians give the
same solution, i.e., the “correction factor” for the entropy
term is just multiplication by n.

L. Entropic prior game theory

Finally, it is worth noting that in the real world the
information we are provided concerning the system often
will not consist of exact values of functionals of q, be those
values expected costs, rationalities, or what have you.
Rather that knowledge will be in the form of data, D,
together with an associated likelihood function over the
space of q. For example, that knowledge might consist of
a bias toward particular rationality values, rather than
precisely specified values:

P (D | q) ∝ e−α
∑

i[RKL([gi]i,q)−ρi]
2

.

where α sets the strength of the bias.
The extension of the maximum entropy principle to

such situations uses the entropic prior, P (q) ∝ e−γS(q).

Bayes’ theorem is then invoked to get the posterior dis-
tribution [18]:

P (q | D) ∝ e−
∑

i αi[RKL([gi]i,q)−ρi]
2−γS(q).

The Bayes optimal estimate for q, under a quadratic
penalty term, is then given by E(q | D). The maxent
principle for estimating q is given by this estimate under
the limit of all αi going to infinity. For finite α solv-
ing for E(q | D) can be quite complicated though. For
simplicity, such cases are not considered here.

III. PD THEORY AND STATISTICAL PHYSICS

There are many connections between bounded ratio-
nal game theory — PD theory — and statistical physics.
This should not be too surprising, given that many of the
important concepts in bounded rational game theory, like
the Boltzmann distribution, the partition function, and
free energy, were first explored in statistical physics. This
section discusses some of these connections.

A. Background on statistical physics

Statistical physics is the physics of systems about
which we have incomplete information. An example is
knowing only the expected value of a system’s energy
(i.e., its temperature) rather than the precise value of the
energy. The statistical physics of such systems is known
as the canonical ensemble. Another example is the
grand canonical ensemble (GCE). There the number
of particles of various types in the system is also uncer-
tain. As in the canonical ensemble, in the GCE what
knowledge we do have takes the form of expectation val-
ues of the quantities about which we are uncertain, i.e.,
the number of particles of the various types that the sys-
tem contains, and the energy the system.
Traditionally these kinds of ensembles were analyzed

in terms of “baths” of the uncertain variable that are
connected to the system. For example, in the canonical
ensemble the system is connected to a heat bath. In the
GCE the system is also connected to a bath of particles
of the various types.
Such analysis showed that for the canonical ensem-

ble the probability of the system being in the particular
state x is given by the Boltzmann distribution over the
associated value of the system’s energy, G(x), with β
interpreted as the (inverse) temperature of the system:
p(x) ∝ e−βG(x). This result is independent of the details
characteristics of the physical system; all that is impor-
tant is the Hamiltonian G(x), and temperature β.
Note that once one knows p(x) and G(x), one knows

the expected energy of the system. It is G(x) that is a
fixed property of the system, whereas β can vary. Ac-
cordingly, specifying β is exactly equivalent to specifying
the expected energy of the system.
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In the case of the GCE, x implicitly specifies the num-
ber of particles of the various types, as well as their
precise state. The analysis for that case showed that
p(x) ∝ e−βG(x)−

∑

i µini . In this formula β is again the
inverse temperature, ni is the number of particles of type
i, and µi > 0 is the chemical potential of each particle
of type i.
Jaynes was the first to show that these results of con-

ventional statistical physics could be derived without re-
course to artificial notions like “baths”, simply by using
the maxent principle. In particular, he used the exact
reasoning in Sec. II F to derive the fact that the canoni-
cal ensemble is governed by the Boltzmann distribution.

B. Mean field theory and PD theory

In practice it can be quite difficult to evaluate this
Boltzmann distribution, due to difficulty in evaluating
the partition function. For example, in a spin glass,
x is an N -dimensional vector of bits, one per particle,
and G(x) =

∑

i,j Hi,jxixj . So the partition function

is given by
∫

dxe−
∑

i,j Hi,jxixj , where H is a symmet-
ric real-valued matrix, and as before we use

∫

to indicate
the integral according to the appropriate measure (here
a point-sum measure). In general, evaluating this sum
for large numbers of spins cannot be done in closed form.
Mean Field (MF) theory is a technique for getting

around this problem by approximating the partition
function. Intuitively, it works by treating all the parti-
cles as independent. It does this by replacing some of the
values of the state of a particle in the Hamiltonian by its
average state. For example, in the case of the spin glass,
one approximates

∑

i,j Hi,j [xi − E(xi)][xj − E(xj)] u 0,
where the expectation values are evaluated according to
the associated exact Boltzmann distribution, i.e., one as-
sumes that fluctuations about the means are relatively
negligible. This then means that

G(x) u

∑

i,j

Hi,j2xiE(xj) −
∑

i,j

Hi,jE(xi)E(xj),

The second sum in this approximation cancels out when
we evaluate the associated approximate Boltzmann dis-
tribution, leaving us with the distribution

pβU (x) u P βU (x) ≡
e−β

∑

i,j Hi,j2xiE(xj)

∫

dx e−β
∑

i,j Hi,j2xiE(xj)

=
∏

i

e−αixi
∫

dxi e−αixi
,

where

αi ≡ 2β
∑

j

Hi,jE(xj).

This approximation P βU (x) is far easier to work
with than the exact Boltzmann distribution, pβU (x) =

e−βG(x)

N(βU) , since each term in the product is for a single spin

by itself. In particular, if we adopt this approximation
we can use numerical techniques to solve the associated
set of simultaneous equations

E(xi) =
∂

∂αi
[

∫

dxi e
−αixi ] ∀i

for the E(xi) (so that those E(xi) are no longer exactly
equal to the expected values of the {xi} under the distri-
bution pβU (x)). Given those E(xi) values, we can then
evaluate the associated approximate Boltzmann distribu-
tion explicitly.
The mean field approximation to the Boltzmann dis-

tribution is a product distribution, and in fact is identical
to the product distribution qg of bounded rational game
theory, for the team game where gi(x) = 2βG(x) ∀i. Ac-
cordingly, the “mean field theory” approximation for an
arbitrary Hamiltonian U can be taken to be the associ-
ated team game qg, which is defined for any U .
This bridge between bounded rational game theory and

statistical physics means that many of the powerful tools
that have been developed in statistical physics can be ap-
plied to bounded rational game theory. They also mean
that PD theoretic techniques can be applied in statisti-
cal physics. In particular, it is shown elsewhere [20, 21]
that if one replaces the identical cost function of each
player in a team game with different cost functions, then
the bounded rational equilibrium of that game can be
numerically found far more quickly. In the context of
statistical physics, this means that numerically solving
for a MF approximation may be expedited by assigning
a different Hamiltonian to each particle.

C. Information-theoretic misfit measures

The proper way to approximate a target distribution p
with a distribution from a set C is to first specify a misfit
measure saying how well each member of C approximates
p, and then solve for the member with the smallest mis-
fit. This is just as true when C is the set of all product
distributions as when it is any other set.
How best to measure distances between probability

distributions is a topic of ongoing controversy and re-
search [27]. The most common way to do so is with the
infinite limit log likelihood of data being generated by
one distribution but misattributed to have come from
the other. This is know as the Kullback-Leibler dis-
tance [16, 17, 28]:

KL(p1 || p2) ≡ S(p1 || p2)− S(p1) (13)

where S(p1 || p2) ≡ −
∫

dx p1(x)ln[
p2(x)
µ(x) ] is known as the

cross entropy from p1 to p2 (and as usual we implic-
itly choose uniform µ). The KL distance is always non-
negative, and equals zero iff its two arguments are identi-
cal. However it it is far from being a metric. In addition
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to violating the triangle inequality, it is not symmetric
under interchange of its arguments, and in numerical ap-
plications has a tendency to blow up. (That happens
whenever the support of p1 includes points outside the
support of p2.)
Nonetheless, this is by far the most popular measure.

It is illuminating to use it as our misfit measure. As
shorthand, define the “pq distance” as KL(p || q), and
the “qp distance” as KL(q || p, where p is our target
distribution and q is a product distribution. Then it is
straightforward to show that the qp distance from q to
target distribution pβU is just the maxent Lagrangian,
up to irrelevant overall constants. In other words, the
q minimizing the maxent Lagrangian — the distribution
arising in MF theory — is the q with the minimal qp
distance to the associated Boltzmann distribution.
However the qp distance is the (infinite limit of the

negative log of the) likelihood that distribution p would
attribute to data generated by distribution q. It can be
argued that a better measure of how well q approximates
p would be based on the likelihood that q attributes to
data generated by p. This is the pq distance. Up to an
overall additive constant (of the canonical distribution’s
entropy), the pq distance is

KL(p || q) = −
∑

i

∫

dx p(x)ln[qi(xi)].

This is equivalent to a team game where each coordinate
i has the “Lagrangian”

L∗
i (q) ≡ −

∫

dxi pi(xi)ln[qi(i)],

where pi(xi) is the marginal distribution
∫

dx(i)p(x).
The minimizer of this is just qi = pi ∀i, i.e., each qi

is set to the associated marginal distribution of p. So in
particular, when our target distribution is the canonical
ensemble distribution pβU , the optimal q according to pq
distance is the set of marginals of pβU . Note that unlike
the solution for qp distance, here the solution for each
qi is independent of the q(i). So we don’t have a game
theory scenario; we do not need to pay attention to the
q(i) when estimating each separate qi. Correspondingly,
whereas there are many local minima of the team game
Lagrangian studied above, q ∈ Q → KL(q || pβU ), there
is only one, global minimum of q ∈ Q → KL(pβ || q).
Another difference between the two kinds of KL dis-

tance is how the associated optimal product distributions
are typically calculated numerically. The product distri-
bution that optimizes the maxent Lagrangian is usually
found via derivative-based traversal of that Lagrangian,
or techniques like (mixed) Brouwer updating[20–22, 24,
42]. In contrast, the integral giving each marginal dis-
tribution of p is usually found via adaptive importance
sampling of the associated integral, with the proposal
distribution for the integral to approximate pi set adap-
tively, as q(i)[20].
It is possible to motivate yet other choices for the q

that best approximates pβU . To derive one of them, start

with Lemma 1, with R
n set to the space of real-valued

functions over the set of x’s (so that n is the number
of possible x). Have a single constraint f that restricts
us to P, the unit simplex in R

n, i.e., that restricts us
to the set of functions that (assuming they are nowhere-
negative) are probability distributions. Choose V to be
the associated Lagrangian, L (p) = βEp(G) − S(p), p
being a point in our constrained submanifold of Rn. Note
that this p can be any distribution over the x’s, including
one that couples the components {xi}.
Say we are at some current product distribution q.

Then we can apply Lemma 1 with the choices just out-
lined to tell us what direction to move from q in P so
as to reduce the Lagrangian. In general, taking a step
in that direction will result in a distribution p′ that is
not a product distribution. However we can solve for the
product distribution that is closest to that p′, and move
to that product distribution. By iterating this procedure
we can define a search over the submanifold of product
distributions. We can then solve for the product distri-
bution at which this search will terminate.
To do this, of course, we must define what we mean by

“closest”. Say that we choose to measure closeness by pq
distance. Then the terminating production distribution
is the one for which the marginals of ∇L+λ∇f all equal
0. For each i, this means that

∫

dx(i)[βG(x) + ln(p(x)) + 1 + λ] = 0

at the equilibrium product distribution p. Writing out
p =

∏

i qi and evaluating gives

qi(xi) ∝ exp (−β

∫

dx(i)G(x)
∫

dx(i)1
). (14)

This is akin to the qg of a bounded rational game, except
that each player/particle i sets its distribution by evalu-
ating conditional expected U with a uniform distribution
over the x(i), rather than with q(i).

D. Semi-coordinate transformations

Let’s say there are numerical difficulties with our find-
ing a q that is local minimization of the maxent La-
grangian. That q might still be a poor fit to p(x) if it
is far from the global minimizer of the Lagrangian. Fur-
thermore, even the global minimizer might be a poor fit,
if p(x) simply can’t be well-approximated by a product
distribution.
There are many techniques for improving the fit of a

product distribution to a target distribution in machine
learning and statistics [28]. To give a simple example,
say one wishes to approximate the target distribution in
R
N with a product of Gaussians, one Gaussian for each
coordinate. Even if the target distribution a Gaussian, if
it is askew, then one won’t be able to do a good job of
approximating it with a product of Gaussians. However
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one can use Principal Components Analysis (PCA) to
find how to rotate one’s coordinates so that a product of
Gaussians fits the target exactly.
Similar techniques can address both the issue of break-

ing free of local minima of the Lagrangian, and improving
the accuracy of the best product distribution approxima-
tion to p. More precisely, identify x with the variables z
discussed in Sec. IIK. Then consider changing the map
ζ(.) : x → z from the identity map. This will in general
change the mapping from Px to Lz(ζ(Px)). So if Lz is
the Lagrangian we are interested in, the mapping from
product distributions over x can be changed by changing
ζ(.), in general.
As an example, consider the case where the space of x’s

is identical to the space of z’s, and consider all possible
bijective transformations ζ(.). Entropy is the same in
both spaces for any ζ, i.e., S(Pz) = S(ζ(Px)) = S(Px).
So for fixed Px, the entropy in z-space is independent of
ζ(.). However if we fix Px and change ζ(.) the expected
values of utilities will change. So Lz(ζ(Px)) does depend
on ζ(.), as claimed.
This means that by changing ζ(.) while leaving qx un-

changed, we will in general change whether we are at a
local minimum ofLz(ζ(qx)). Furthermore, such a change
will change how closely the global minimizer ofLz(ζ(qx))
approximates any particular target distribution. Indeed,
some such transformation will always transform a team
game to have a strictly convex maxent Lagrangian, with
only one (bounded rational) equilibrium, an equilibrium
that is in the interior of the region of allowed q and
that has the lowest possible value of the Lagrangian.
In the worst case, we can get this behavior by trans-
forming to the semi-coordinate system in which x is one-
dimensional, so that any p(z) — coupling its variables or
not — can be expressed as a q(x) = q1(x1).
Note that unlike with PCA, semi-coordinate transfor-

mations can be used for non-Euclidean semi-coordinates
(i.e., when neither x’s nor z’s are Euclidean vectors).
They also can be guided by numerous measures of the
goodness of fit to the target distribution (e.g., KL dis-
tance), in contrast to PCA’s restriction to assuming a
Gaussian likelihood.

E. Bounded rational game theory for variable

number of players

The bridge between statistical physics and bounded ra-
tional game theory have many uses beyond the practical
ones alluded to the previous subsection. In particular,
it suggests extending bounded rational game theory to
ensembles other than the canonical ensemble. As an ex-
ample, in the GCE the number of particles of the various
allowed types is uncertain and can vary. The bounded
rational game theory version of that ensemble is a game
in which the number of players of various types can vary.
We can illustrate this by extending a simple instance

of evolutionary game theory [6] to incorporate bounded

rationality and allow for a finite total number of play-
ers. Say we have a finite population of players, each of
which has one of m′ possible types. (These are some-
times called feature vectors in the literature.) Each
player i in the population is randomly paired with a dif-
ferent player j, and they each choose a strategy for a two-
person game. The set of strategies each of those players
can choose among is fixed by its respective attribute vec-
tor. In addition the cost player i receives depends on the
attribute vectors of itself and of j, in addition to their
joint strategy. Finally, to reflect this dependence, we al-
low each player to vary its strategy depending on the
attribute vector of its opponent; we call player i’s meta-
strategy the mapping from its opponent’s attribute vec-
tor to i’s strategy. [60].
We encode an instance of this scenario in an x with

a countably infinite number of dimensions. xi,0 ≡ ni(x)
specifies the number of players of type i, with ~n(x) be-
ing the vector of the number of players of all types. For
1 < j ≤ xi,0, xi,j ≡ si,j(x) the meta-strategy selected
by the j’th player of type i. If its opponent is the j’th
player of type T ′, the cost to the i’th player of type T
is gT,i,T ′,j(x) ≡ gT,i,T ′,j(s, s

′, nT , nT ′), where s and s′

are the two players’ respective meta-strategy. To enforce
consistency between the index numbers i, j and the asso-
ciated numbers of players, we set gT,i,T ′,j(s, s

′, ~n) = 0 if
either i > nT or j > nT ′ .
To start we parallel the GCE, and presume that for

each type we know the expected number of players hav-
ing that type, and the expected cost averaged over all
players having that type. Also stipulate that the distri-
bution over x is a product distribution, q. Then our prior
information specifies the values of

∑

k>0 k qT,0(k) =
∑

x
T,0

x
T,0

q
T,0
(x

T,0
)

and

∑

~n:n
T
>0 q(~n)

∑

T ′:n
T ′

>0
[ nT ′
∑

T ′′ nT ′′
]
∑

j,k

∫

ds
T
ds

T ′

[1− δ
T,T ′

δ
j,k
]
q
T,j
(s

T
)q

T ′,k
(s

T ′
)g

T,j,T ′,k
(s

T
, s

T ′
, ~n)

n
T
n
T ′

=

∑

x
1,0

. . .
∑

x
T,0>0

. . .
∑

x
m′,0

∑

T ′

∑

j,k

∫

dx
T,j
dx

T ′,k

{[1− δ
T,T ′

δ
j,k
] [

m′
∏

i=1

qi,0(xi,0)] ×

q
T,j
(x

T,j
) q

T ′,k
(x

T ′,k
) g

T,j,T ′,k
(x)

x
T,0

∑

T ′′ xT ′′,0
}

respectively, for all types T . (The sums over j and k all
implicitly extend from 1 to ∞, and the delta functions
are Kronecker deltas that prevent a player from playing
itself.)
We can write these expressions as expectation values,

over x, of 2m′ functions. These functions are the m′
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functions nT (x) = xT,0 (one function for each T ) and
the m′ functions

cT (x) ≡

∑

T ′,j,k{[1− δ
T,T ′

δ
j,k
] g

T,j,T ′,k
(x)}

x
T,0

∑

T ′′ xT ′′,0
Θ(x

T,0
)

respectively, where Θ is the Heaviside theta function that
equals 1 if its argument exceeds 0, and equals 0 otherwise.
Accordingly, the maxent principle directs us to minimize
the Lagrangian

L (q) = −
∑

T

[µT (E(nT )−NT )+βT (E(cT )−CT )] − S(q)

where the integers {NT } and real numbers {CT } are our
prior information. In the usual way, the solution for each
pair (i ∈ {1, . . . ,m′}, j ≥ 0) is

q
i,j
(x

i,j
) ∝ e−E([

∑

T ′ µT ′
n
T ′

− β
T ′

c
T ′

] | x
i,j

),

where the values of the Lagrange parameters are all set
by our prior information.
This distribution is analogous to the one in the GCE.

As usual, one can consider variants of it by focusing on
one variable at a time, having prior knowledge in the
form of rationality values, etc. In addition, even if we
stay in this random-2-player games scenario, there is no
reason for us to restrict attention to prior information
paralleling that of the GCE. As with bounded rational
game theory with a fixed number of players, our prior
information can concern nonlinear functions of q, couple
the cost functions, etc.
In particular, in evolutionary game theory we do not

know the expected number of players having each type,
nor their average costs. In addition, the equilibrium con-
cept stipulates that all players will have type T if a par-
ticular condition holds. That condition is that the addi-
tion of a player of type other than T to the population
results in an expected cost to that added player that is
greater than the associated expected cost to the players
having type T . This provides a model of the phenotypic
interactions underlying natural selection.
We can encapsulate evolutionary game theory in a La-

grangian by appropriately replacing each pair of GCE-
type constraints (one pair for each type) with a single
constraint. As an example, we could have the (single)
constraint for type T be that

E(
n
T

∑

T ′
n
T ′

) = E([
max

T ′
c
T ′
− c

T

max
T ′
(c

T ′
)−min

T ′
(c

T ′
)
]
γ

) (15)

for some positive real value γ. For finite γ, the entropy
term in the Lagrangian ensures that for no T is the expec-
tation value in the lefthand side of this constraint exactly
0.
In the limit of infinite γ, the distribution minimizing

this Lagrangian is non-infinitesimal only for the evolu-
tionarily stable strategies of conventional evolution-
ary game theory. These are the (type, strategy) pairs

that are best performing, in the sense that no other pair
has a lower cost function value. The distribution for fi-
nite γ can be viewed as a “bounded rational” extension
of conventional evolutionary game theory. In that exten-
sion (type, strategy) pairs are allowed even if they don’t
have the lowest possible cost, so long as their cost is close
to the lowest possible [61].
There is always a solution to this Lagrangian (un-

like the case in conventional full rationality evolutionary
game theory). The technique of Lagrange parameters
provides that solution for each pair (i ∈ {1, . . . ,m′}, j ≥
0) in the usual way:

q
i,j
(x

i,j
) ∝ e

−E(
∑

T ′
α
T ′

f
T ′

(x) | x
i,j

)

where the Lagrange parameters enforce our constraint,
and

f
T ′
(x) ≡

n
T ′

∑

T ′′
n
T ′′

− [
max

T ′′
c
T ′′
− c

T ′′

max
T ′′
(c

T ′′
)−min

T ′′
(c

T ′′
)
]
γ

.

More general forms of evolutionary game theory al-
low games with more than two players, and localization
via network structures delineating how players are likely
to be grouped to play a game. Other elaborations have
each player not know the exact attribute vectors of all its
opponents, but only an “information structure” provid-
ing some information about those opponents’ attribute
vectors. All such extensions can be straightforwardly in-
corporated into the current analysis. Many other exten-
sions are simple to make as well. For example, since the
cost functions have all components of ~n in their argument
lists, they can depend on the total size of the population.
This allows us to model the effect on population size of
finite environmental resources.
Note that if we change how we encode the number of

players of the various types and their joint meta-strategy
in x, we change the form of the expectations in Eq. 15.
This reflects the fact that by changing the encoding we
change the implication of using a product distribution.
Formally, such a change in the encoding is a change in
the semi-coordinate system. See Sec. IIK.

IV. APPENDIX

This appendix provides proofs absent from the main
text.

A. β
∑

i
[Ep(gi)]

2 − S(p) is convex over the unit

simplex

Proof: Since S(p) is concave over the unit simplex,
and the unit simplex is a hyperplane, it suffices to prove
that

∑

i[Ep(gi)]
2 is convex over all of Euclidean space.

Since a weighted average of convex functions is convex,
we only need to prove that any single function of the form
[
∫

dx p(x)f(x)]2 is convex. The Hessian of this function
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is 2f(x)f(x′). Rotate coordinates so that f is a basis
vector, i.e., so that f is proportional to a delta function.
This doesn’t change the eigenvalues of the Hessian. After
this change though, the Hessian is diagonal, with one
non-zero entry on the diagonal, which is non-negative.
So its eigenvalues are zero and a non-negative number.
QED.

B. RKL is a rationality operator

Proof: Since KL distance only equals 0 when its ar-
guments match and is never negative, requirement (1)
of rationality operators holds for RKL. Next, since
RKL = argminβ [β

∫

dy p(y)U(y) + ln(N(βU))], we know

that Ep(U) = − 1
N(βU)

∂N(βU)
∂β |β=RKL(U,p). Accordingly,

all p with the same rationality have the same expected
value Ep(U). Using the technique of Lagrange parame-
ters then readily establishes that of those distributions
having the same expected U , the one with maximal en-
tropy is a Boltzmann distribution. Furthermore, by re-
quirement (1), we know that for a Boltzmann distribu-
tion the exponent β must equal the rationality of that
distribution. QED.

C. Alternative form of a constraint on RKL

Proof: Let f{α, v} be any function that is monotoni-
cally decreasing in its (real-valued) first argument. Then
any constraint R([gi]i,q, qi)−ρi = 0 is satisfied iff the con-
straint f{R([gi]i,q, qi), q(i)} − f{ρi, q(i)} = 0 is satisfied.
Choose

f{α, q(i)} = −
∂ln(N(β[gi]i,q))

∂β
|β=α

=

∫

dxi[gi]i,qe
−α[gi]i,q(xi)

N(α[gi]i,q)
.

Differentiating this quantity with respect to α gives the
negative of the variance of [gi]i,q under the Boltzmann

distribution e−α[gi]i,q

N(α[gi]i,q)
. Since variances are non-negative,

this derivative is non-positive, which establishes that f
is monotonically decreasing in its first argument.
Evaluating,

f{ρi, q(i)} =

∫

dx gi(x)
e−ρiE(gi|xi)

N(ρigi)
q(i)(x(i)).

In addition, from the equation defining RKL, we know
that

−
ln(N(βU(xi)))

∂β
|β=RKL(U,qi) =

∫

dxiqi(xi)U(xi)

for any function U . Plugging in U = [gi]i,q, we see that

f{R([gi]i,q, qi), q(i)) =

∫

dxiqi(xi)[gi]i,q(xi)

= Eq(gi).QED.

D. qg minimizes the Lagrangians of Eq. 10

Proof: Following Nash, we can use Brouwer’s fixed
point theorem to establish that for any non-negative {ρi},
there must exist at least one product distribution given
by qg. The constraint term in all the Li of Eq. 10 is
zero for this distribution. By requirement (2), we also
know that given qg(i) (and therefore [gi]i,qg ), there is no

qi with rationality ρi that has lower entropy than qgi .
Accordingly, no qi will have a lower value of Li. Since
this holds for all i, qg minimizes all the Lagrangians in
Eq. 10 simultaneously. QED.

E. Derivation of Lemma 1

Proof: Consider the set of ~u such that the directional
derivatives D~ufi evaluated at x

′ all equal 0. These are
the directions consistent with our constraints to first or-
der. We need to find the one of those ~u such that D~ug
evaluated at x′ is maximal.
To simplify the analysis we introduce the constraint

that |~u| = 1. This means that the directional derivative
D~uV for any function V is just ~u · ∇V . We then use La-
grange parameters to solve our problem. Our constraints
on ~u are

∑

j u
2
j = 1 and D~ufi(x

′) = ~u · ∇fi(x
′) = 0 ∀i.

Our objective function is D~uV (x
′) = ~u · ∇V (x′).

Differentiating the Lagrangian gives

2λ0ui +
∑

i

λi∇f = ∇V ∀i.

with solution

ui =
∇V −

∑

i λi∇f

2λ0
.

λ0 enforces our constraint on |~u|. Since we are only in-
terested in specifying ~u up to a proportionality constant,
we can set 2λ0 = 1. Redefining the Lagrange parameters
by multiplying them by −1 then gives the result claimed.
QED.

F. Proof of claims following Lemma 1

i) Define fi(q) ≡
∫

dxiqi(xi), i.e., fi is the constraint
forcing qi to be normalized. Now for any q that equals
zero for some joint move there must be an i and an x′i such
that qi(x

′
i) = 0. Plugging into Lemma 1, we can evaluate

the component of the direction of steepest descent along
the direction of player i’s probability of making move x′i:

∂Li

∂qi(xi)
+ λ

∂fi
∂qi(xi)

=

βE(gi | xi) + ln(qi(xi))−

∫

dx′′i [βE(gi | x
′′
i ) + ln(qi(x

′′
i ))]

∫

dx′′i 1
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Since there must some x′′i such tha qi(x
′′
i ) 6= 0, ∃xi such

that βE(gi | x
′′
i ) + ln(qi(x

′′
i )) is finite. Therefore our

component is negative infinite. So Li can be reduced by
increasing qi(x

′
i). Accordingly, no q having zero prob-

ability for some joint move x can be a minimum of i’s
Lagrangian.

ii) To construct a bounded rational game with multiple
equilibria, note that at any (necessarily interior) local
minimum q, for each i,

βE(gi | xi) + ln(qi(xi)) =

β

∫

dx(i)gi(xi, x(i))
∏

j 6=i

qj(xj) + ln(qi(xi))

must be independent of xi, by Lemma 1. So say
there is a component-by-component bijection T (x) ≡
(T1(x1), T2(x2), . . .) that leaves all the {gj} unchanged,
i.e., such that gj(x) = gj(T (x)) ∀x, j [62].
Define q′ by q′(x) = q(T (x)) ∀x. Then for any two

values x1
i and x

2
i ,

βEq′(gi | x
1
i ) + ln(q

′
i(x

1
i ))

− βEq′(gi | x
2
i ) + ln(q′i(x

2
i ))

=

β

∫

dx(i)gi(x
1
i , x(i))

∏

j 6=i

qj(T (xj)) + ln(qi(T (x
1
i )))

− β

∫

dx(i)gi(x
2
i , x(i))

∏

j 6=i

qj(T (xj))) + ln(qi(T (x
2
i )))

=

β

∫

dx(i)gi(x
1
i , T

−1(x(i)))
∏

j 6=i

qj(xj) + ln(qi(T (x
1
i )))

− β

∫

dx(i)gi(x
2
i , T

−1(x(i)))
∏

j 6=i

qj(xj)) + ln(qi(T (x
2
i )))

=

β

∫

dx(i)gi(T (x
1
i ), x(i)))

∏

j 6=i

qj(xj) + ln(qi(T (x
1
i )))

− β

∫

dx(i)gi(T (x
2
i ), x(i)))

∏

j 6=i

qj(xj)) + ln(qi(T (x
2
i )))

=

βEq(gi | T (x
1
i )) + ln(qi(T (x

1
i )))

− βEq(gi | T (x
2
i )) + ln(qi(T (x

2
i )))

where the invariance of gi was used in the penultimate
step. Since q is a local minimum though, this last differ-
ence must equal 0. Therefore q′ is also a local minimum.
Now choose the game so that ∀i, xi, T (xi) 6= xi. (Our

congestion game example has this property.) Then the

only way the transformation q → q(T ) can avoiding
producing a new product distribution is if qi(xi) =
qi(x

′
i) ∀i, xi, x

′
i, i.e., q is uniform. Say the Hessians of

the players’ Lagrangians are not all positive definite at
the uniform q. (For example have our congestion game
be biased away from uniform multiplicities.) Then that
q is not a local minimum of the Lagrangians. Therefore
at a local minimum, q 6= q(T ). Accordingly, q and q(T )
are two distinct equilibria.

iii) To establish that at any q there is always a direction
along which any player’s Lagrangian is locally convex, fix
all but two of the {qi}, q0 and q1, and fix both q0 and q1
for all but two of their respective possible values, which
we can write as q0(0), q0(1), q1(0), and q1(1), respectively.
So we can parameterize the set of q we’re considering by
two real numbers, x ≡ q0(0) and y ≡ q1(0). The 2 × 2
Hessian of Li as a function of x and y has the entries

1

x
+

1

a− x
α

α
1

y
+

1

b− y

where a ≡ 1−q0(0)−q0(1) and b ≡ 1−q1(0)−q1(1), and
α is a function of gi and

∏

j 6=0,1 qj . Defining s ≡
1
x +

1
a−x

and t ≡ 1
y +

1
b−y , the eigenvalues of that Hessian are

s+ t±
√

4α2 + (s− t)2

2
.

The eigenvalue for the positive root is necessarily posi-
tive. Therefore along the corresponding eigenvector, Li

is convex at q. QED.

iv) There are several ways to show that the value of
EqBi

([gi]i,q(i)) must shrink as βi grows. Here we do so by

evaluating the associated derivative with respect to βi.

Define N(U) ≡
∫

dy e−U(y), the normalization con-

stant for the distribution proportional to e−U(y). View
the xi-indexed vector qBi as a function of βi, gi and
q(i). So we can somewhat inelegantly write E(gi) =
EqBi (βi,gi,q(i)),q(i)

(gi). Then one can expand

∂E(gi)

∂βi
= −

∂2ln(N(βi[gi]i,q(i)))

∂β2
i

= −Var([gi]i,q(i))

where the variance is over possible xi, sampled according
to qBi (xi). QED.
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